
 Concurrency Control

Chapter 16: Concurrency Control
• Lock-Based Protocols
• Timestamp-Based Protocols
• Validation-Based Protocols
• Multiple Granularity
• Multiversion Schemes
• Insert and Delete Operations
• Concurrency in Index Structures

Lock-Based Protocols
• A lock is a mechanism to control concurrent access to

a data item
• Data items can be locked in two modes :
 1. exclusive (X) mode. Data item can be both read as

well as
 written. X-lock is requested using lock-X instruction.
 2. shared (S) mode. Data item can only be read. S-lock

is
 requested using lock-S instruction.
• Lock requests are made to concurrency-control

manager. Transaction can proceed only after request is
granted.

Lock-Based Protocols (Cont.)
• Lock-compatibility matrix

• A transaction may be granted a lock on an item if the requested

lock is compatible with locks already held on the item by other
transactions

• Any number of transactions can hold shared locks on an item,
– but if any transaction holds an exclusive on the item no other

transaction may hold any lock on the item.

• If a lock cannot be granted, the requesting transaction is made
to wait till all incompatible locks held by other transactions have
been released. The lock is then granted.

Lock-Based Protocols (Cont.)
• Example of a transaction performing locking:
 T2: lock-S(A);
 read (A);
 unlock(A);
 lock-S(B);
 read (B);
 unlock(B);
 display(A+B)
• Locking as above is not sufficient to guarantee serializability — if A

and B get updated in-between the read of A and B, the displayed
sum would be wrong.

• A locking protocol is a set of rules followed by all transactions
while requesting and releasing locks. Locking protocols restrict the
set of possible schedules.

Pitfalls of Lock-Based Protocols
• Consider the partial schedule

• Neither T3 nor T4 can make progress — executing lock-S(B)
causes T4 to wait for T3 to release its lock on B, while executing
lock-X(A) causes T3 to wait for T4 to release its lock on A.

• Such a situation is called a deadlock.
– To handle a deadlock one of T3 or T4 must be rolled back

and its locks released.

Pitfalls of Lock-Based Protocols
(Cont.)

• The potential for deadlock exists in most locking
protocols. Deadlocks are a necessary evil.

• Starvation is also possible if concurrency control
manager is badly designed. For example:
– A transaction may be waiting for an X-lock on an item,

while a sequence of other transactions request and
are granted an S-lock on the same item.

– The same transaction is repeatedly rolled back due to
deadlocks.

• Concurrency control manager can be designed to
prevent starvation.

The Two-Phase Locking Protocol
• This is a protocol which ensures conflict-

serializable schedules.
• Phase 1: Growing Phase

– transaction may obtain locks
– transaction may not release locks

• Phase 2: Shrinking Phase
– transaction may release locks
– transaction may not obtain locks

• The protocol assures serializability. It can be proved
that the transactions can be serialized in the order
of their lock points (i.e. the point where a
transaction acquired its final lock).

The Two-Phase Locking Protocol
(Cont.)

• Two-phase locking does not ensure freedom from deadlocks

• Cascading roll-back is possible under two-phase locking. To
avoid this, follow a modified protocol called strict two-phase
locking. Here a transaction must hold all its exclusive locks till
it commits/aborts.

• Rigorous two-phase locking is even stricter: here all locks are
held till commit/abort. In this protocol transactions can be
serialized in the order in which they commit.

The Two-Phase Locking Protocol
(Cont.)

• There can be conflict serializable schedules
that cannot be obtained if two-phase locking
is used.

• However, in the absence of extra information
(e.g., ordering of access to data), two-phase
locking is needed for conflict serializability in
the following sense:

 Given a transaction Ti that does not follow
two-phase locking, we can find a transaction
Tj that uses two-phase locking, and a schedule
for Ti and Tj that is not conflict serializable.

Lock Conversions
• Two-phase locking with lock conversions:

 – First Phase:

– can acquire a lock-S on item

– can acquire a lock-X on item

– can convert a lock-S to a lock-X (upgrade)

 – Second Phase:

– can release a lock-S

– can release a lock-X

– can convert a lock-X to a lock-S (downgrade)

• This protocol assures serializability. But still
relies on the programmer to insert the
various locking instructions.

Automatic Acquisition of Locks
• A transaction Ti issues the standard

read/write instruction, without explicit

locking calls.

• The operation read(D) is processed as:

 if Ti has a lock on D

 then

 read(D)
 else begin

 if necessary wait until no
other

 transaction has a lock-X

Automatic Acquisition of Locks
(Cont.) • write(D) is processed as:

 if Ti has a lock-X on D
 then
 write(D)
 else begin
 if necessary wait until no other trans.

has any lock on D,
 if Ti has a lock-S on D
 then
 upgrade lock on D to lock-X
 else
 grant Ti a lock-X on D

 write(D)

Implementation of Locking
• A lock manager can be implemented as a

separate process to which transactions
send lock and unlock requests

• The lock manager replies to a lock request
by sending a lock grant messages (or a
message asking the transaction to roll
back, in case of a deadlock)

• The requesting transaction waits until its
request is answered

• The lock manager maintains a data-
structure called a lock table to record
granted locks and pending requests

Lock Table
• Black rectangles indicate granted locks,

white ones indicate waiting requests

• Lock table also records the type of lock
granted or requested

• New request is added to the end of the
queue of requests for the data item, and
granted if it is compatible with all earlier
locks

• Unlock requests result in the request being
deleted, and later requests are checked to
see if they can now be granted

• If transaction aborts, all waiting or granted
requests of the transaction are deleted

– lock manager may keep a list of locks
held by each transaction, to implement
this efficiently

Granted

Waiting

Graph-Based Protocols
• Graph-based protocols are an alternative

to two-phase locking

• Impose a partial ordering  on the set D =
{d1, d2 ,..., dh} of all data items.

– If di  dj then any transaction accessing both
di and dj must access di before accessing dj.

– Implies that the set D may now be viewed as a
directed acyclic graph, called a database
graph.

• The tree-protocol is a simple kind of graph
protocol.

Tree Protocol

1.Only exclusive locks are allowed.

2.The first lock by Ti may be on any data
item. Subsequently, a data Q can be locked
by Ti only if the parent of Q is currently
locked by Ti.

Graph-Based Protocols (Cont.)
• The tree protocol ensures conflict

serializability as well as freedom from
deadlock.

• Unlocking may occur earlier in the tree-
locking protocol than in the two-phase
locking protocol.
– shorter waiting times, and increase in

concurrency

– protocol is deadlock-free, no rollbacks are
required

• Drawbacks
– Protocol does not guarantee recoverability or

cascade freedom

Multiple Granularity
• Allow data items to be of various sizes and

define a hierarchy of data granularities,
where the small granularities are nested
within larger ones

• Can be represented graphically as a tree
(but don't confuse with tree-locking
protocol)

• When a transaction locks a node in the
tree explicitly, it implicitly locks all the
node's descendents in the same mode.

• Granularity of locking (level in tree where
locking is done):

Example of Granularity Hierarchy

 The levels, starting from the coarsest (top)
level are

Intention Lock Modes
• In addition to S and X lock modes, there

are three additional lock modes with
multiple granularity:

– intention-shared (IS): indicates explicit locking
at a lower level of the tree but only with
shared locks.

– intention-exclusive (IX): indicates explicit
locking at a lower level with exclusive or
shared locks

– shared and intention-exclusive (SIX): the
subtree rooted by that node is locked
explicitly in shared mode and explicit locking is
being done at a lower level with exclusive-

Compatibility Matrix with
 Intention Lock Modes

• The compatibility matrix for all lock modes
is:

IS IX S S IX X

IS

IX

S

S IX

X











  



 



   

  

 





 

Multiple Granularity Locking
Scheme • Transaction Ti can lock a node Q, using the

following rules:
1. The lock compatibility matrix must be observed.

2. The root of the tree must be locked first, and
may be locked in any mode.

3. A node Q can be locked by Ti in S or IS mode
only if the parent of Q is currently locked by Ti in
either IX or IS mode.

4. A node Q can be locked by Ti in X, SIX, or IX
mode only if the parent of Q is currently locked
by Ti in either IX or SIX mode.

5. Ti can lock a node only if it has not previously
unlocked any node (that is, Ti is two-phase).

6. T can unlock a node Q only if none of the

Deadlock Handling
• Consider the following two transactions:

 T1: write (X) T2: write(Y)

 write(Y) write(X)

• Schedule with deadlock
T1 T2

lock-X on X

write (X)
lock-X on Y

write (X)

wait for lock-X on X

wait for lock-X on Y

Deadlock Handling
• System is deadlocked if there is a set of

transactions such that every transaction in
the set is waiting for another transaction in
the set.

• Deadlock prevention protocols ensure that
the system will never enter into a deadlock
state. Some prevention strategies :

– Require that each transaction locks all its data
items before it begins execution
(predeclaration).

– Impose partial ordering of all data items and
require that a transaction can lock data items
only in the order specified by the partial order

More Deadlock Prevention
Strategies • Following schemes use transaction

timestamps for the sake of deadlock
prevention alone.

• wait-die scheme — non-preemptive

– older transaction may wait for younger one to
release data item. Younger transactions never
wait for older ones; they are rolled back
instead.

– a transaction may die several times before
acquiring needed data item

• wound-wait scheme — preemptive

– older transaction wounds (forces rollback) of

Deadlock prevention (Cont.)
• Both in wait-die and in wound-wait

schemes, a rolled back transactions is
restarted with its original timestamp. Older
transactions thus have precedence over
newer ones, and starvation is hence
avoided.

• Timeout-Based Schemes :

– a transaction waits for a lock only for a
specified amount of time. After that, the wait
times out and the transaction is rolled back.

– thus deadlocks are not possible

– simple to implement; but starvation is

Deadlock Detection
• Deadlocks can be described as a wait-for

graph, which consists of a pair G = (V,E),

– V is a set of vertices (all the transactions in the
system)

– E is a set of edges; each element is an ordered
pair Ti Tj.

• If Ti  Tj is in E, then there is a directed
edge from Ti to Tj, implying that Ti is
waiting for Tj to release a data item.

• When Ti requests a data item currently
being held by Tj, then the edge Ti Tj is
inserted in the wait-for graph. This edge is

Deadlock Detection (Cont.)

Wait-for graph without a cycle Wait-for graph with a cycle

Deadlock Recovery
• When deadlock is detected :

– Some transaction will have to rolled back
(made a victim) to break deadlock. Select that
transaction as victim that will incur minimum
cost.

– Rollback -- determine how far to roll back
transaction

• Total rollback: Abort the transaction and then
restart it.

• More effective to roll back transaction only as far
as necessary to break deadlock.

– Starvation happens if same transaction is
always chosen as victim. Include the number
of rollbacks in the cost factor to avoid

Other Approaches to
Concurrency Control

Timestamp-Based Protocols
• Each transaction is issued a timestamp when it

enters the system. If an old transaction Ti has

time-stamp TS(Ti), a new transaction Tj is

assigned time-stamp TS(Tj) such that TS(Ti)

<TS(Tj).

• The protocol manages concurrent execution

such that the time-stamps determine the

serializability order.

• In order to assure such behavior, the protocol

maintains for each data Q two timestamp

values:

Timestamp-Based Protocols
(Cont.)

• The timestamp ordering protocol ensures
that any conflicting read and write
operations are executed in timestamp
order.

• Suppose a transaction Ti issues a read(Q)

1. If TS(Ti)  W-timestamp(Q), then Ti needs to
read a value of Q that was already
overwritten.

 Hence, the read operation is rejected, and Ti is
rolled back.

2. If TS(Ti) W-timestamp(Q), then the read
operation is executed, and R-timestamp(Q) is
set to max(R-timestamp(Q), TS(T)).

Timestamp-Based Protocols (Cont.)
• Suppose that transaction Ti issues

write(Q).

1. If TS(Ti) < R-timestamp(Q), then the value of Q
that Ti is producing was needed previously,
and the system assumed that that value
would never be produced.

 Hence, the write operation is rejected, and Ti is
rolled back.

2. If TS(Ti) < W-timestamp(Q), then Ti is
attempting to write an obsolete value of Q.

 Hence, this write operation is rejected, and Ti is
rolled back.

3. Otherwise, the write operation is executed,

Example Use of the Protocol
A partial schedule for several data items for

transactions with
timestamps 1, 2, 3, 4, 5

T1 T2 T3 T4 T5

read(Y)
read(X)

read(Y)
write(Y)
write(Z)

read(Z)
read(X)
abort

read(X)
write(Z)
abort

write(Y)

write(Z)

Correctness of Timestamp-Ordering Protocol

• The timestamp-ordering protocol
guarantees serializability since all the arcs in
the precedence graph are of the form:

 Thus, there will be no cycles in the
precedence graph

• Timestamp protocol ensures freedom from

transaction

with smaller

timestamp

transaction

with larger

timestamp

Recoverability and Cascade
Freedom • Problem with timestamp-ordering protocol:

– Suppose Ti aborts, but Tj has read a data item
written by Ti

– Then Tj must abort; if Tj had been allowed to
commit earlier, the schedule is not recoverable.

– Further, any transaction that has read a data
item written by Tj must abort

– This can lead to cascading rollback --- that is, a
chain of rollbacks

• Solution 1:
– A transaction is structured such that its writes

are all performed at the end of its processing

– All writes of a transaction form an atomic
action; no transaction may execute while a

Thomas’ Write Rule
• Modified version of the timestamp-

ordering protocol in which obsolete write
operations may be ignored under certain
circumstances.

• When Ti attempts to write data item Q, if

TS(Ti) < W-timestamp(Q), then Ti is

attempting to write an obsolete value of

{Q}.

– Rather than rolling back Ti as the timestamp

ordering protocol would have done, this

{write} operation can be ignored.

• Otherwise this protocol is the same as the

Validation-Based Protocol
• Execution of transaction Ti is done in three

phases.

 1. Read and execution phase: Transaction Ti
writes only to

 temporary local variables

 2. Validation phase: Transaction Ti performs
a ``validation test''

 to determine if local variables can be
written without violating

 serializability.

 3. Write phase: If Ti is validated, the updates
are applied to the

 database; otherwise, Ti is rolled back.

Validation-Based Protocol (Cont.)
• Each transaction Ti has 3 timestamps

– Start(Ti) : the time when Ti started its
execution

– Validation(Ti): the time when Ti entered its
validation phase

– Finish(Ti) : the time when Ti finished its write
phase

• Serializability order is determined by
timestamp given at validation time, to
increase concurrency.

– Thus TS(Ti) is given the value of Validation(Ti).

• This protocol is useful and gives greater

Validation Test for Transaction Tj
• If for all Ti with TS (Ti) < TS (Tj) either one of

the following condition holds:

– finish(Ti) < start(Tj)

– start(Tj) < finish(Ti) < validation(Tj) and the
set of data items written by Ti does not
intersect with the set of data items read by Tj.

 then validation succeeds and Tj can be
committed. Otherwise, validation fails and
Tj is aborted.

• Justification: Either the first condition is
satisfied, and there is no overlapped
execution, or the second condition is

Schedule Produced by Validation
• Example of schedule produced using

validation
T14 T15

read(B)
read(B)

B:= B-50

read(A)

A:= A+50
read(A)

(validate)

display (A+B)
(validate)

write (B)

write (A)

Multiversion Schemes
• Multiversion schemes keep old versions of

data item to increase concurrency.

– Multiversion Timestamp Ordering

– Multiversion Two-Phase Locking

• Each successful write results in the
creation of a new version of the data item
written.

• Use timestamps to label versions.

• When a read(Q) operation is issued, select
an appropriate version of Q based on the
timestamp of the transaction, and return
the value of the selected version.

Multiversion Timestamp Ordering
• Each data item Q has a sequence of

versions <Q1, Q2,...., Qm>. Each version Qk
contains three data fields:

– Content -- the value of version Qk.

– W-timestamp(Qk) -- timestamp of the
transaction that created (wrote) version Qk

– R-timestamp(Qk) -- largest timestamp of a
transaction that successfully read version Qk

• when a transaction Ti creates a new
version Qk of Q, Qk's W-timestamp and R-
timestamp are initialized to TS(Ti).

• R-timestamp of Qk is updated whenever a

Multiversion Timestamp Ordering
(Cont) • Suppose that transaction Ti issues a read(Q)

or write(Q) operation. Let Qk denote the
version of Q whose write timestamp is the
largest write timestamp less than or equal
to TS(Ti).

1. If transaction Ti issues a read(Q), then the value
returned is the content of version Qk.

2. If transaction Ti issues a write(Q)

1. if TS(Ti) < R-timestamp(Qk), then transaction Ti is
rolled back.

2. if TS(Ti) = W-timestamp(Qk), the contents of Qk are
overwritten

3. else a new version of Q is created.

Multiversion Two-Phase Locking
• Differentiates between read-only

transactions and update transactions

• Update transactions acquire read and write
locks, and hold all locks up to the end of the
transaction. That is, update transactions
follow rigorous two-phase locking.

– Each successful write results in the creation of
a new version of the data item written.

– each version of a data item has a single
timestamp whose value is obtained from a
counter ts-counter that is incremented during
commit processing.

Read-only transactions are assigned a

Multiversion Two-Phase Locking
(Cont.) • When an update transaction wants to read

a data item:

– it obtains a shared lock on it, and reads the
latest version.

• When it wants to write an item

– it obtains X lock on; it then creates a new
version of the item and sets this version's
timestamp to .

• When update transaction Ti completes,
commit processing occurs:

– Ti sets timestamp on the versions it has created
to ts-counter + 1

MVCC: Implementation Issues

• Creation of multiple versions increases storage
overhead

– Extra tuples

– Extra space in each tuple for storing version
information

• Versions can, however, be garbage collected

– E.g. if Q has two versions Q5 and Q9, and the
oldest active transaction has timestamp > 9, than
Q5 will never be required again

Insert and Delete Operations
• If two-phase locking is used :

– A delete operation may be performed only if
the transaction deleting the tuple has an
exclusive lock on the tuple to be deleted.

– A transaction that inserts a new tuple into the
database is given an X-mode lock on the tuple

• Insertions and deletions can lead to the
phantom phenomenon.
– A transaction that scans a relation

• (e.g., find sum of balances of all accounts in
Perryridge)

and a transaction that inserts a tuple in the relation

• (e.g., insert a new account at Perryridge)

(conceptually) conflict in spite of not accessing any

Insert and Delete Operations
(Cont.) • The transaction scanning the relation is

reading information that indicates what
tuples the relation contains, while a
transaction inserting a tuple updates the same
information.

– The information should be locked.

• One solution:

– Associate a data item with the relation, to
represent the information about what tuples the
relation contains.

– Transactions scanning the relation acquire a
shared lock in the data item,

Index Locking Protocol
• Index locking protocol:

– Every relation must have at least one index.

– A transaction can access tuples only after finding
them through one or more indices on the
relation

– A transaction Ti that performs a lookup must lock
all the index leaf nodes that it accesses, in S-
mode

• Even if the leaf node does not contain any tuple
satisfying the index lookup (e.g. for a range query, no
tuple in a leaf is in the range)

– A transaction Ti that inserts, updates or deletes a
tuple ti in a relation r

Weak Levels of Consistency
• Degree-two consistency: differs from two-

phase locking in that S-locks may be
released at any time, and locks may be
acquired at any time

– X-locks must be held till end of transaction

– Serializability is not guaranteed, programmer
must ensure that no erroneous database state
will occur]

• Cursor stability:

– For reads, each tuple is locked, read, and lock is
immediately released

– X-locks are held till end of transaction

Weak Levels of Consistency in SQL
• SQL allows non-serializable executions

– Serializable: is the default

– Repeatable read: allows only committed
records to be read, and repeating a read should
return the same value (so read locks should be
retained)
• However, the phantom phenomenon need not be

prevented
– T1 may see some records inserted by T2, but may not see

others inserted by T2

– Read committed: same as degree two
consistency, but most systems implement it as
cursor-stability

– Read uncommitted: allows even uncommitted
data to be read

Concurrency in Index Structures
• Indices are unlike other database items in

that their only job is to help in accessing
data.

• Index-structures are typically accessed very
often, much more than other database
items.

– Treating index-structures like other database
items, e.g. by 2-phase locking of index nodes
can lead to low concurrency.

• There are several index concurrency
protocols where locks on internal nodes are
released early, and not in a two-phase

Concurrency in Index Structures
(Cont.) • Example of index concurrency protocol:

• Use crabbing instead of two-phase locking on the nodes of the B+-tree, as follows.
During search/insertion/deletion:

– First lock the root node in shared mode.

– After locking all required children of a node in shared mode, release the lock on the
node.

– During insertion/deletion, upgrade leaf node locks to exclusive mode.

– When splitting or coalescing requires changes to a parent, lock the parent in
exclusive mode.

• Above protocol can cause excessive deadlocks

– Searches coming down the tree deadlock with updates going up the tree

– Can abort and restart search, without affecting transaction

• Better protocols are available; see Section 16.9 for one such protocol, the B-link tree
protocol

– Intuition: release lock on parent before acquiring lock on child

• And deal with changes that may have happened between lock release and
acquire

Next-Key Locking

• Index-locking protocol to prevent phantoms
required locking entire leaf

– Can result in poor concurrency if there are many
inserts

• Alternative: for an index lookup

– Lock all values that satisfy index lookup (match
lookup value, or fall in lookup range)

– Also lock next key value in index

– Lock mode: S for lookups, X for
insert/delete/update

• Ensures that range queries will conflict with

Extra Slides

Snapshot Isolation
• Motivation: Decision support queries that

read large amounts of data have
concurrency conflicts with OLTP
transactions that update a few rows
– Poor performance results

• Solution 1: Give logical “snapshot” of
database state to read only transactions,
read-write transactions use normal locking
– Multiversion 2-phase locking

– Works well, but how does system know a
transaction is read only?

• Solution 2: Give snapshot of database state
to every transaction, updates alone use 2-

Snapshot Isolation

• A transaction T1 executing with Snapshot
Isolation

– takes snapshot of committed data at start

– always reads/modifies data in its own
snapshot

– updates of concurrent transactions are not
visible to T1

– writes of T1 complete when it commits

– First-committer-wins rule:

• Commits only if no other concurrent
transaction has already written data
that T1 intends to write.

T1 T2 T3

W(Y := 1)

Commit

Start

R(X)  0

R(Y) 1

W(X:=2)

W(Z:=3)

Commit

R(Z)  0

R(Y)  1

W(X:=3)

Commit-Req

Abort

Concurrent updates not visible

Own updates are visible

Not first-committer of X

Serialization error, T2 is rolled back

Benefits of SI
• Reading is never blocked,

– and also doesn’t block other txns activities

• Performance similar to Read Committed

• Avoids the usual anomalies
– No dirty read

– No lost update

– No non-repeatable read

– Predicate based selects are repeatable (no
phantoms)

• Problems with SI
– SI does not always give serializable executions

• Serializable: among two concurrent txns, one sees
the effects of the other

Snapshot Isolation

• E.g. of problem with SI

– T1: x:=y

– T2: y:= x

– Initially x = 3 and y = 17

• Serial execution: x = ??, y = ??

• if both transactions start at the same time, with
snapshot isolation: x = ?? , y = ??

• Called skew write

• Skew also occurs with inserts

– E.g:

• Find max order number among all orders

Snapshot Isolation Anomalies

• SI breaks serializability when txns modify
different items, each based on a previous state
of the item the other modified

– Not very commin in practice

• Eg. the TPC-C benchmark runs correctly under SI

• when txns conflict due to modifying different data,
there is usually also a shared item they both modify too
(like a total quantity) so SI will abort one of them

– But does occur

• Application developers should be careful about write
skew

• SI can also cause a read-only transaction

SI In Oracle and PostgreSQL
• Warning: SI used when isolation level is set to

serializable, by Oracle and PostgreSQL

– PostgreSQL’s implementation of SI described in
Section 26.4.1.3

– Oracle implements “first updater wins” rule
(variant of “first committer wins”)

• concurrent writer check is done at time of write, not at
commit time

• Allows transactions to be rolled back earlier

– Neither supports true serializable execution

• Can sidestep for specific queries by using
select .. for update in Oracle and PostgreSQL

– Locks the data which is read, preventing

End of Chapter

Thanks to Alan Fekete and Sudhir
Jorwekar for Snapshot Isolation

examples

Snapshot Read
 Concurrent updates invisible to snapshot read

Snapshot Write: First Committer

Wins

– Variant: “First-updater-wins”

• Check for concurrent updates when write occurs

• (Oracle uses this plus some extra features)

• Differs only in when abort occurs, otherwise equivalent

SI Non-Serializability even for Read-Only Transactions

Partial Schedule Under Two-Phase
Locking

Incomplete Schedule With a Lock Conversion

Tree-Structured Database Graph

Serializable Schedule Under the Tree Protocol

Schedule 3

Schedule 4

Schedule 5, A Schedule Produced by Using Validation

Compatibility Matrix

Nonserializable Schedule with Degree-Two Consistency

B+-Tree For account File with n = 3.

Insertion of “Clearview” Into the B+-Tree of Figure 16.21

Lock-Compatibility Matrix

