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Lock-Based Protocols 
• A lock is a mechanism to control concurrent access to 

a data item 
• Data items can be locked in two modes : 
    1.  exclusive (X) mode. Data item can be both read as 

well as    
         written. X-lock is requested using  lock-X instruction. 
    2.  shared (S) mode. Data item can only be read. S-lock 

is           
         requested using  lock-S instruction. 
• Lock requests are made to concurrency-control 

manager. Transaction can proceed only after request is 
granted. 



Lock-Based Protocols (Cont.) 
• Lock-compatibility matrix 

 
 
 

 
• A transaction may be granted a lock on an item if the requested 

lock is compatible with locks already held on the item by other 
transactions 

• Any number of transactions can hold shared locks on an item,  
– but if any transaction holds an exclusive on the item no other 

transaction may hold any lock on the item. 

• If a lock cannot be granted, the requesting transaction is made 
to wait till all incompatible locks held by other transactions have 
been released.  The lock is then granted. 



Lock-Based Protocols (Cont.) 
• Example of a transaction performing locking: 
                       T2: lock-S(A); 
                             read (A); 
                             unlock(A); 
                             lock-S(B); 
                             read (B); 
                             unlock(B); 
                             display(A+B) 
• Locking as above is not sufficient to guarantee serializability — if A 

and B get updated in-between the read of A and B, the displayed 
sum would be wrong. 

• A  locking protocol is a set of rules followed by all transactions 
while requesting and releasing locks. Locking protocols restrict the 
set of possible schedules. 



Pitfalls of Lock-Based Protocols 
• Consider the partial schedule 

 
 
 

 
 
 
 

 
 

• Neither T3 nor T4 can make progress — executing  lock-S(B) 
causes T4 to wait for T3 to release its lock on B, while executing  
lock-X(A) causes T3  to wait for T4 to release its lock on A. 

• Such a situation is called a deadlock.  
– To handle a deadlock one of T3 or T4 must be rolled back  

and its locks released. 



Pitfalls of Lock-Based Protocols 
(Cont.) 

• The potential for deadlock exists in most locking 
protocols. Deadlocks are a necessary evil. 

• Starvation is also possible if concurrency control 
manager is badly designed. For example: 
– A transaction may be waiting for an X-lock on an item, 

while a sequence of other transactions request and 
are granted an S-lock on the same item.   

– The same transaction is repeatedly rolled back due to 
deadlocks. 

• Concurrency control manager can be designed to 
prevent starvation. 



The Two-Phase Locking Protocol 
• This is a protocol which ensures conflict-

serializable schedules. 
• Phase 1: Growing Phase 

– transaction may obtain locks  
– transaction may not release locks 

• Phase 2: Shrinking Phase 
– transaction may release locks 
– transaction may not obtain locks 

• The protocol assures serializability. It can be proved 
that the transactions can be serialized in the order 
of their lock points  (i.e. the point where a 
transaction acquired its final lock).  



The Two-Phase Locking Protocol 
(Cont.) 

• Two-phase locking does not ensure freedom from deadlocks 

• Cascading roll-back is possible under two-phase locking. To 
avoid this, follow a modified protocol called strict two-phase 
locking. Here a transaction must hold all its exclusive locks till 
it commits/aborts. 

• Rigorous two-phase locking is even stricter: here all locks are 
held till commit/abort. In this protocol transactions can be 
serialized in the order in which they commit. 



The Two-Phase Locking Protocol 
(Cont.) 

• There can be conflict serializable schedules 
that cannot be obtained if two-phase locking 
is used.   

• However, in the absence of extra information 
(e.g., ordering of  access to data), two-phase 
locking is needed for conflict serializability in 
the following sense: 

    Given a transaction Ti that does not follow 
two-phase locking, we can find a transaction 
Tj that uses two-phase locking, and a schedule 
for Ti and Tj that is not conflict serializable. 



Lock Conversions 
• Two-phase locking with lock conversions: 

     –   First Phase:         

– can acquire a lock-S on item 

– can acquire a lock-X on item 

– can convert a lock-S to a lock-X (upgrade) 

     –   Second Phase: 

– can release a lock-S 

– can release a lock-X 

– can convert a lock-X to a lock-S  (downgrade) 

• This protocol assures serializability. But still 
relies on the programmer to insert the 
various  locking instructions. 



Automatic Acquisition of Locks 
• A transaction Ti issues the standard 

read/write instruction, without explicit 

locking calls. 

• The operation read(D) is processed as: 

                      if Ti has a lock on D 

                         then 

                                read(D)  
                         else begin  

                                   if necessary wait until no 
other   

                                       transaction has a lock-X 



Automatic Acquisition of Locks 
(Cont.) • write(D) is processed as: 

     if Ti has a  lock-X on D  
        then  
          write(D) 
       else begin 
            if necessary wait until no other trans. 

has any lock on D, 
            if Ti has a lock-S on D 
                 then 
                    upgrade lock on D  to lock-X 
                else 
                    grant Ti a lock-X on D 

                write(D) 



Implementation of Locking 
• A lock manager can be implemented as a 

separate process to which transactions 
send lock and unlock requests 

• The lock manager replies to a lock request 
by sending a lock grant messages (or a 
message asking the transaction to roll 
back, in case of  a deadlock) 

• The requesting transaction waits until its 
request is answered 

• The lock manager maintains a data-
structure called a lock table to record 
granted locks and pending requests 



Lock Table 
• Black rectangles indicate granted locks, 

white ones indicate waiting requests 

• Lock table also records the type of lock 
granted or requested 

• New request is added to the end of the 
queue of requests for the data item, and 
granted if it is compatible with all earlier 
locks 

• Unlock requests result in the request being 
deleted, and later requests are checked to 
see if they can now be granted 

• If transaction aborts, all waiting or granted 
requests of the transaction are deleted  

– lock manager may keep a list of locks 
held by each transaction, to implement 
this efficiently 

Granted 

Waiting 



Graph-Based Protocols 
• Graph-based protocols are an alternative 

to two-phase locking 

• Impose a partial ordering  on the set D = 
{d1, d2 ,..., dh} of all data items. 

– If di  dj  then any transaction accessing both 
di and dj must access di before accessing dj. 

– Implies that the set D may now be viewed as a 
directed acyclic graph, called a database 
graph. 

• The tree-protocol is a simple kind of graph 
protocol.  



Tree Protocol 

1.Only exclusive locks are allowed. 

2.The first lock by Ti may be on any data 
item. Subsequently, a data Q can be locked 
by Ti only if the parent of Q is currently 
locked by Ti. 



Graph-Based Protocols (Cont.) 
• The tree protocol ensures conflict 

serializability as well as freedom from 
deadlock. 

• Unlocking may occur earlier in the tree-
locking protocol than in the two-phase 
locking protocol. 
– shorter waiting times, and increase in 

concurrency 

– protocol is deadlock-free, no rollbacks are 
required 

• Drawbacks 
– Protocol does not guarantee recoverability or 

cascade freedom 



Multiple Granularity 
• Allow  data items to be of various sizes and 

define a hierarchy of data granularities, 
where the small granularities are nested 
within larger ones 

• Can be represented graphically as a tree 
(but don't confuse with tree-locking 
protocol) 

• When a transaction locks a node in the 
tree explicitly, it implicitly locks all the 
node's descendents in the same mode. 

• Granularity of locking (level in tree where 
locking is done): 



Example of Granularity Hierarchy 

 

 

 

 

 

 

 

 

 

      The levels, starting from the coarsest (top) 
level are 



Intention Lock Modes 
• In addition to S and X lock modes, there 

are three additional lock modes with 
multiple granularity: 

– intention-shared (IS): indicates explicit locking 
at a lower level of the tree but only with 
shared locks. 

– intention-exclusive (IX): indicates explicit 
locking at a lower level with exclusive or 
shared locks 

– shared and intention-exclusive (SIX): the 
subtree rooted by that node is locked 
explicitly in shared mode and explicit locking is 
being done at a lower level with exclusive-



Compatibility Matrix with 
 Intention Lock Modes 

• The compatibility matrix for all lock modes 
is:  
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Multiple Granularity Locking 
Scheme • Transaction Ti can lock a node Q, using the 

following rules: 
1. The lock compatibility matrix must be observed. 

2. The root of the tree must be locked first, and 
may be locked in any mode. 

3. A node Q can be locked by Ti in S or IS mode 
only if the parent of Q is currently locked by Ti in 
either IX or IS mode. 

4. A node Q can be locked by Ti in X, SIX, or IX 
mode only if the parent of Q is currently locked 
by Ti in either IX or SIX mode. 

5. Ti can lock a node only if it has not previously 
unlocked any node (that is, Ti is two-phase). 

6. T  can unlock a node Q only if none of the 



Deadlock Handling 
• Consider the following two transactions: 

             T1:     write (X)               T2:    write(Y) 

                      write(Y)                         write(X) 

• Schedule with deadlock 
T1 T2 

lock-X on X 

write (X)  
lock-X on Y 

write (X)   

wait for lock-X on X 

wait for lock-X on Y 



Deadlock Handling 
• System is deadlocked if there is a set of 

transactions such that every transaction in 
the set is waiting for another transaction in 
the set. 

• Deadlock prevention protocols ensure that 
the system will never enter into a deadlock 
state. Some prevention strategies : 

– Require that each transaction locks all its data 
items before it begins execution 
(predeclaration). 

– Impose partial ordering of all data items and 
require that a transaction can lock data items 
only in the order specified by the partial order 



More Deadlock Prevention 
Strategies • Following schemes use transaction 

timestamps for the sake of deadlock 
prevention alone. 

• wait-die scheme — non-preemptive 

– older transaction may wait for younger one to 
release data item. Younger transactions never 
wait for older ones; they are rolled back 
instead. 

– a transaction may die several times before 
acquiring needed data item 

• wound-wait scheme — preemptive 

– older transaction wounds (forces rollback) of 



Deadlock prevention (Cont.) 
• Both in wait-die and in wound-wait 

schemes, a rolled back transactions is 
restarted with its original timestamp. Older 
transactions thus have precedence over 
newer ones, and starvation is hence 
avoided. 

• Timeout-Based Schemes : 

– a transaction waits for a lock only for a 
specified amount of time. After that, the wait 
times out and the transaction is rolled back. 

– thus deadlocks are not possible 

– simple to implement; but starvation is 



Deadlock Detection 
• Deadlocks can be described as a wait-for 

graph, which consists of a pair G = (V,E),  

– V is a set of vertices (all the transactions in the 
system) 

– E is a set of edges; each element is an ordered 
pair Ti Tj.   

• If Ti   Tj is in E, then there is a directed 
edge from Ti to Tj, implying that Ti is 
waiting for Tj to release a data item. 

• When Ti requests a data item currently 
being held by Tj, then the edge Ti  Tj is 
inserted in the wait-for graph. This edge is 



Deadlock Detection (Cont.) 

Wait-for graph without a cycle Wait-for graph with a cycle 



Deadlock Recovery 
• When deadlock is  detected : 

– Some transaction will have to rolled back 
(made a victim) to break deadlock.  Select that 
transaction as victim that will incur minimum 
cost. 

– Rollback -- determine how far to roll back 
transaction 

• Total rollback: Abort the transaction and then 
restart it. 

• More effective to roll back transaction only as far 
as necessary to break deadlock. 

– Starvation happens if same transaction is 
always chosen as victim. Include the number 
of rollbacks in the cost factor to avoid 



Other Approaches to 
Concurrency Control 



Timestamp-Based Protocols 
• Each transaction is issued a timestamp when it 

enters the system. If an old transaction Ti has 

time-stamp TS(Ti), a new transaction Tj is 

assigned time-stamp TS(Tj) such that TS(Ti) 

<TS(Tj).  

• The protocol manages concurrent execution 

such that the time-stamps determine the 

serializability order. 

• In order to assure such behavior, the protocol 

maintains for each data Q two timestamp 

values: 



Timestamp-Based Protocols 
(Cont.) 

• The timestamp ordering protocol ensures 
that any conflicting  read and write 
operations are executed in timestamp 
order. 

• Suppose a transaction Ti issues a read(Q) 

1. If TS(Ti)  W-timestamp(Q), then Ti needs to 
read a value of Q        that was already 
overwritten. 

 Hence, the read operation is rejected, and Ti  is 
rolled back. 

2. If TS(Ti) W-timestamp(Q), then the read 
operation is executed, and R-timestamp(Q) is 
set to max(R-timestamp(Q), TS(T )). 



Timestamp-Based Protocols (Cont.) 
• Suppose that transaction Ti issues 

write(Q). 

1. If TS(Ti) < R-timestamp(Q), then the value of Q 
that Ti is producing was needed previously, 
and the system assumed that that value 
would never be produced.  

 Hence, the write operation is rejected, and Ti is 
rolled back. 

2. If TS(Ti) < W-timestamp(Q), then Ti is 
attempting to write an obsolete value of Q.  

 Hence, this write operation is rejected, and Ti is 
rolled back. 

3. Otherwise, the  write operation is executed, 



Example Use of the Protocol 
A partial schedule for several data items for 

transactions with 
timestamps 1, 2, 3, 4, 5 

    

T1 T2 T3 T4 T5 

read(Y) 
read(X)  

read(Y) 
write(Y)  
write(Z)  

read(Z)  
read(X)  
abort   

read(X)  
write(Z)  
abort   

write(Y)  

write(Z)   



Correctness of Timestamp-Ordering Protocol 

• The timestamp-ordering protocol 
guarantees serializability since all the arcs in 
the precedence graph are of the form: 

     

 

 

 

 

    Thus, there will be no cycles in the 
precedence graph 

• Timestamp protocol ensures freedom from 

transaction 

with smaller 

timestamp 

transaction 

with larger 

timestamp  



Recoverability and Cascade 
Freedom • Problem with timestamp-ordering protocol: 

– Suppose Ti aborts, but Tj has read a data item 
written by  Ti 

– Then Tj must abort; if Tj had been allowed to 
commit earlier, the schedule is not recoverable. 

– Further, any transaction that has read a data 
item written by Tj must abort 

– This can lead to cascading rollback --- that is, a 
chain of rollbacks  

•  Solution 1: 
– A transaction is structured such that its writes 

are all performed at the end of its processing 

– All writes of a transaction form an atomic 
action; no transaction may execute while a 



Thomas’ Write Rule 
• Modified version of the timestamp-

ordering protocol in which obsolete  write 
operations may be ignored under certain 
circumstances. 

• When Ti attempts to write data item Q, if 

TS(Ti) < W-timestamp(Q), then Ti is 

attempting to write an obsolete value of 

{Q}.  

– Rather than rolling back Ti as the timestamp 

ordering protocol would have done, this 

{write} operation can be ignored. 

• Otherwise this protocol is the same as the 



Validation-Based Protocol 
• Execution of transaction Ti is done in three 

phases. 

  1.  Read and execution phase: Transaction Ti 
writes only to          

       temporary local variables 

  2.  Validation phase: Transaction Ti performs 
a ``validation test''  

        to determine if local variables can be 
written without violating          

        serializability. 

  3.  Write phase: If Ti is validated, the updates 
are applied to the  

   database; otherwise, Ti is rolled back. 



Validation-Based Protocol (Cont.) 
• Each transaction Ti has 3 timestamps 

– Start(Ti) : the time when Ti started its 
execution 

– Validation(Ti): the time when Ti entered its 
validation phase 

– Finish(Ti) : the time when Ti finished its write 
phase 

• Serializability order is determined by 
timestamp given at validation time,  to 
increase concurrency.  

– Thus TS(Ti) is given the value of Validation(Ti). 

• This protocol is useful and gives greater 



Validation Test for Transaction Tj 
• If for all Ti with TS (Ti) < TS (Tj) either one of 

the following condition holds: 

– finish(Ti) < start(Tj)  

– start(Tj) < finish(Ti) < validation(Tj) and the 
set of data items written by Ti does not 
intersect with the set of data items read by Tj.   

     then validation succeeds and Tj can be 
committed.  Otherwise, validation fails and 
Tj is aborted. 

• Justification:  Either the first condition is 
satisfied, and there is no overlapped 
execution, or the second condition is 



Schedule Produced by Validation 
• Example of schedule produced using 

validation 
T14 T15 

read(B) 
read(B) 

B:= B-50 

read(A) 

A:= A+50 
read(A) 

(validate) 

display (A+B) 
(validate) 

write (B) 

write (A) 



Multiversion Schemes 
• Multiversion schemes keep old versions of 

data item to increase concurrency. 

– Multiversion Timestamp Ordering 

– Multiversion Two-Phase Locking 

• Each successful write results in the 
creation of a new version of the data item 
written. 

• Use timestamps to label versions. 

• When a read(Q) operation is issued, select 
an appropriate version of Q based on the 
timestamp of the transaction, and return 
the value of the selected version.   



Multiversion Timestamp Ordering 
• Each data item Q has a sequence of 

versions <Q1, Q2,...., Qm>. Each version Qk 
contains three data fields: 

– Content -- the value of version Qk. 

– W-timestamp(Qk) -- timestamp of the 
transaction that created (wrote) version Qk 

– R-timestamp(Qk) -- largest timestamp of a 
transaction that successfully read version Qk 

• when a transaction Ti creates a new 
version Qk of Q, Qk's W-timestamp and R-
timestamp are initialized to TS(Ti).  

• R-timestamp of Qk is updated whenever a 



Multiversion Timestamp Ordering 
(Cont) • Suppose that transaction Ti issues a read(Q) 

or write(Q) operation.  Let Qk denote the 
version of Q whose write timestamp is the 
largest write timestamp less than or equal 
to TS(Ti). 

1. If transaction Ti issues a read(Q), then the value 
returned is the       content of version Qk. 

2. If transaction Ti issues a  write(Q) 

1. if TS(Ti) < R-timestamp(Qk), then transaction Ti is 
rolled back.  

2. if TS(Ti) = W-timestamp(Qk), the contents of Qk are 
overwritten 

3. else a new version of Q is created. 



Multiversion Two-Phase Locking 
• Differentiates between read-only 

transactions and update transactions 

• Update transactions acquire read and write 
locks, and hold all locks up to the end of the 
transaction. That is, update transactions 
follow rigorous two-phase locking. 

– Each successful write results in the creation of 
a new version of the data item written. 

– each version of a data item has a single 
timestamp whose value is obtained from a 
counter ts-counter that is incremented during 
commit processing. 

Read-only transactions are assigned a 



Multiversion Two-Phase Locking 
(Cont.) • When an update transaction wants to read 

a data item: 

– it obtains a shared lock on it, and reads the 
latest version.  

• When it wants to write an item 

– it obtains X lock on; it then creates a new 
version of the item and sets this version's 
timestamp to . 

• When update transaction Ti completes, 
commit processing occurs: 

– Ti sets timestamp on the versions it has created 
to  ts-counter + 1 



MVCC: Implementation Issues 

• Creation of multiple versions increases storage 
overhead 

– Extra tuples 

– Extra space in each tuple for storing version 
information 

• Versions can, however, be garbage collected 

– E.g. if Q has two versions Q5 and Q9, and the 
oldest active transaction has timestamp > 9, than 
Q5 will never be required again 

 



Insert and Delete Operations 
• If two-phase locking is used : 

– A  delete operation may be performed only if 
the transaction deleting the tuple has an 
exclusive lock on the tuple to be deleted. 

– A transaction that inserts a new tuple into the 
database is given an X-mode lock on the tuple 

• Insertions and deletions can lead to the 
phantom phenomenon. 
– A transaction that scans a relation  

• (e.g., find sum of balances of all accounts in 
Perryridge)  

and a transaction that inserts a tuple in the relation  

• (e.g., insert a new account at Perryridge) 

(conceptually) conflict in spite of not accessing any 



Insert  and Delete Operations 
(Cont.) • The transaction scanning the relation is 

reading  information that indicates what 
tuples the relation contains, while a 
transaction inserting a tuple updates the same 
information. 

–  The information should be locked. 

• One solution:  

– Associate a data item with the relation, to 
represent the information about what tuples the 
relation contains. 

– Transactions scanning the relation acquire a 
shared lock in the data item,  



Index Locking Protocol 
• Index locking protocol: 

– Every relation must have at least one index.  

– A transaction can access tuples only after finding 
them through one or more indices on the 
relation 

– A transaction Ti that performs a lookup must lock 
all the index leaf nodes that it accesses, in S-
mode 

• Even if the leaf node does not contain any tuple 
satisfying the index lookup (e.g. for a range query, no 
tuple in a leaf is in the range) 

– A transaction Ti that inserts, updates or deletes a 
tuple ti in a relation r  



Weak Levels of Consistency 
• Degree-two consistency: differs from two-

phase locking in that S-locks may be 
released at any time, and locks may be 
acquired at any time 

– X-locks must be held till end of transaction 

– Serializability is not guaranteed, programmer 
must ensure that no erroneous database state 
will occur] 

• Cursor stability:  

– For reads, each tuple is locked, read, and lock is 
immediately released 

– X-locks are held till end of transaction 



Weak Levels of Consistency in SQL 
• SQL allows non-serializable executions 

– Serializable: is the default 

– Repeatable read: allows only committed 
records to be read, and repeating a read should 
return the same value (so read locks should be 
retained) 
• However, the phantom phenomenon need not be 

prevented 
– T1 may see some records inserted by T2, but may not see 

others inserted by T2 

– Read committed:  same as degree two 
consistency, but most systems implement it as 
cursor-stability 

– Read uncommitted: allows even uncommitted 
data to be read 



Concurrency in Index Structures 
• Indices are unlike other database items in 

that their only job is to help in accessing 
data. 

• Index-structures are typically accessed very 
often, much more than other database 
items.  

– Treating index-structures like other database 
items, e.g. by 2-phase locking of index nodes 
can lead to low concurrency.    

• There are several index concurrency 
protocols where locks on internal nodes are 
released early, and not in a two-phase 



Concurrency in Index Structures 
(Cont.) • Example of index concurrency protocol: 

• Use crabbing instead of two-phase locking on the nodes of the B+-tree, as follows.  
During search/insertion/deletion: 

– First lock the root node in shared mode. 

– After locking all required children of a node in shared mode, release the lock on the 
node. 

– During insertion/deletion, upgrade leaf node locks to exclusive mode. 

– When splitting or coalescing requires changes to a parent, lock the parent in 
exclusive mode. 

• Above protocol can cause excessive deadlocks 

– Searches coming down the tree deadlock with updates going up the tree 

– Can abort and restart search, without affecting transaction 

•  Better protocols are available; see Section 16.9 for one such protocol, the B-link tree 
protocol 

– Intuition: release lock on parent before acquiring lock on child 

• And deal with changes that may have happened between lock release and 
acquire 



Next-Key Locking 

• Index-locking protocol to prevent phantoms 
required locking entire leaf 

– Can result in poor concurrency if there are many 
inserts 

• Alternative: for an index lookup 

– Lock all values that satisfy index lookup (match 
lookup value, or fall in lookup range) 

– Also lock next key value in index 

– Lock mode: S for lookups, X for 
insert/delete/update 

• Ensures that range queries will conflict with 



Extra Slides 



Snapshot Isolation  
• Motivation: Decision support queries that 

read large amounts of data have 
concurrency conflicts with OLTP 
transactions that update a few rows 
– Poor performance results 

• Solution 1:  Give logical “snapshot” of 
database state to read only transactions, 
read-write transactions use normal locking 
– Multiversion 2-phase locking 

– Works well, but how does system know a 
transaction is read only? 

• Solution 2: Give snapshot of database state 
to every transaction, updates alone use 2-



Snapshot Isolation 

• A transaction T1 executing with Snapshot 
Isolation 

– takes snapshot of committed data at start 

– always reads/modifies data in its own 
snapshot 

– updates of concurrent transactions are not 
visible to T1  

– writes of T1 complete when it commits 

– First-committer-wins rule: 

• Commits only if no other concurrent 
transaction has already written data 
that T1 intends to write. 

T1 T2 T3 

W(Y := 1) 

Commit 

Start 

R(X)  0 

R(Y) 1 

W(X:=2) 

W(Z:=3) 

Commit 

R(Z)  0 

R(Y)  1 

W(X:=3) 

Commit-Req 

Abort 

Concurrent updates not visible 

Own updates are visible 

Not first-committer of X 

Serialization error, T2 is rolled back 



Benefits of SI 
• Reading is never blocked,  

– and also doesn’t block other txns activities 

• Performance similar to Read Committed 

• Avoids the usual anomalies 
– No dirty read 

– No lost update 

– No non-repeatable read 

– Predicate based selects are repeatable (no 
phantoms) 

• Problems with SI 
– SI does not always give serializable executions 

• Serializable: among two concurrent txns, one sees 
the effects of the other 



Snapshot Isolation 

• E.g. of problem with SI 

– T1: x:=y 

– T2: y:= x 

– Initially x = 3 and y = 17 

• Serial execution:  x = ??, y = ?? 

• if both transactions start at the same time, with 
snapshot isolation:  x = ?? , y = ?? 

• Called skew write 

• Skew also occurs with inserts 

– E.g: 

• Find max order number among all orders 



Snapshot Isolation Anomalies 

• SI breaks serializability when txns modify 
different items, each based on a previous state 
of the item the other modified 

– Not very commin in practice 

• Eg. the TPC-C benchmark runs correctly under SI 

• when txns conflict due to modifying different data, 
there is usually also a shared item they both modify too 
(like a total quantity) so SI will abort one of them 

– But does occur 

• Application developers should be careful about write 
skew 

• SI can also cause a read-only transaction 



SI In Oracle and PostgreSQL 
• Warning: SI used when isolation level is set to 

serializable, by Oracle and PostgreSQL  

– PostgreSQL’s implementation of SI described in 
Section 26.4.1.3 

– Oracle implements “first updater wins” rule 
(variant of “first committer wins”) 

• concurrent writer check is done at time of write, not at 
commit time 

• Allows transactions to be rolled back earlier 

– Neither supports true serializable execution 

• Can sidestep for specific queries by using 
select .. for update in Oracle and PostgreSQL 

– Locks the data which is read, preventing 



End of Chapter 

Thanks to Alan Fekete and Sudhir 
Jorwekar for Snapshot Isolation 

examples 



Snapshot Read 
 Concurrent updates invisible to snapshot read 



Snapshot Write: First Committer 

Wins 

– Variant: “First-updater-wins” 

• Check for concurrent updates when write occurs 

• (Oracle uses this plus some extra features) 

• Differs only in when abort occurs, otherwise equivalent  



SI Non-Serializability even for Read-Only Transactions 



Partial Schedule Under Two-Phase 
Locking 



Incomplete Schedule With a Lock Conversion 



Tree-Structured Database Graph 



Serializable Schedule Under the Tree Protocol 



Schedule 3 



Schedule 4 



Schedule 5, A Schedule Produced by Using Validation 



Compatibility Matrix 



Nonserializable Schedule with Degree-Two Consistency 



B+-Tree For account File with n = 3. 



Insertion of “Clearview” Into the B+-Tree of Figure 16.21 



Lock-Compatibility Matrix 


